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Abstract

A simple model for aggregate formation in cellulose solutions is presented. Owing to a strong tendency of hydrogen-bond formation
among the cellulose molecules, aggregation does not lead to a completely random arrangement of the molecules. In a core, parts of the chain
molecules are laterally aligned. This core is surrounded by disordered regions that give rise to the formation of coronas under the action of
solvent molecules while the core is completely immiscible with the solvent. Therefore, the aggregates can be seen as fringed micelles. The
equilibrium structure of these micelles, number of aggregated chains and size of the coronas, is discussed as a function of the interfacial
tension between core and solvent. It turns out that both number of aggregated chains and thickness of the coronas increase with increasing
interfacial tension. In perfect solutions of the micelles, these quantities also increase with cellulose concentration. If one admits attractions
between coronas of different micelles, as a small perturbation, clustering of micelles might be induced. This may cause phase instability of the
particle phase which results in the coexistence of a diluted and a more concentrated solution.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dissolution of cellulose has been studied extensively over
the last two decades, and a variety of solvent systems is
known [1–4]. For many of those solvent systems, it turns
out, however, that dissolution of cellulose cannot be done in
one step since the highly ordered structure of native
cellulose prevents access of solvent molecules. Then, prior
to dissolution, in a process of activation, the ordered (crys-
talline) domains of cellulose are transferred in disordered
regions. Concomitantly, the hydrogen-bond system of
cellulose is disintegrated to some extent. These alterations
of the cellulose structure turn out to be prerequisites for the
solvent molecules to get access to the cellulose chains.
Usually, activation is carried out by swelling of cellulose
in a highly polar medium or by thermo-mechanical treat-
ments. There are also reports on enzymatically controlled
and radiation-induced activation procedures [5,6].

However, this activation process may not disintegrate
completely the ordered domains of cellulose. As a result,
cellulose solutions cannot be seen as molecularly dispersed
systems, but comprise aggregates of still ordered cellulose
molecules. This seems to be a characteristic pattern of cellu-
lose solutions [7]. For solutions of incompletely substituted

cellulose derivatives, it was suggested that these aggregates
consist of a core of aligned chains with coronas of dangling
chains at the ends [7,8]. Scattering experiments revealed
that the linear mass density of the aggregates increases
with weight-average molecular weight, concomitantly, the
objects become stiffer. This increase of linear mass density
and the accompanying increase of chain stiffness give direct
evidence for lateral aggregation of the chains [7]. Here, we
adopt this model of fringed micelles as the state of aggrega-
tion in cellulose solutions. Moreover, we focus on a special
class of solvent systems. Common features of these systems
are: they all consist of an aprotic polar solvent (e.g.
dimethylacetamide) in combination with an inorganic salt,
preferably lithium chloride (LiCl). There is experimental
evidence that LiCl ion pairs form complexes with the
polar solvent molecules [9–12]. Obviously, these com-
plexes play a prominent role in dissolving of cellulose
[1,4,11,13,14]. The study opens with a discussion on the
stability of fringed micelles. This is followed by outlines
on solutions of such aggregates.

2. Model

2.1. Fringed micelles of cellulose molecules

The ternary solution composed of cellulose chains with a
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degree of polymerizationNC, an inorganic salt and a polar
organic solvent is seen as a quasi-binary system of cellulose
molecules and solvent complexes formed by solvent mole-
cules and the salt. This can be done as long as the concen-
trations of cellulose and salt are small compared with the
concentration of the organic solvent in the ternary system.
Moreover, it is assumed that any salt molecule forms a
complex with solvent molecules. Then, the volume fractions
of celluloseF and complexesFcompl are given by

F ¼
NCNcell

N
andFcompl¼

Ncompl

N
(1)

whereNcell and Ncompl are the numbers of cellulose mole-
cules and solvent complexes, respectively, andN is the total
number of monomers in the system,N ¼ NCNcell þ Ncompl.

Now, we assume that the cellulose solution consists of
aggregates, each of which comprisesp cellulose molecules.
As mentioned earlier, cellulose is not completely amor-
phous after the activation procedure. This implies that
there still exist ordered domains surrounded by amorphous
regions. The ordered domains are completely immiscible
with the solvent while for the amorphous regions the solvent
complexes turn out to be a moderate solvent. One may say,
the driving force for formation of highly ordered aggregate
cores is to establish a regular network of hydrogen bonds
between the aligned cellulose molecules and to reduce the
unfavourable contacts with the solvent complexes. The
aggregates, that develop under the action of the solvent
complexes, are supposed to be of the type of fringed
micelles with a cylindrical core that splits in spherical cor-
onas at both ends (cf. Fig. 1). To surface sites of the core,
that are able to form hydrogen bonds, solvent complexes are
attached. This governs the core’s interfacial tension,KkBT
(kB, Boltzmann’s constant; T, absolute temperature), to the
surrounding medium. Solvent complexes are only adsorbed
at the cylindrical core.

The free energy of a single aggregate, composed ofp
cellulose molecules, is an important quantity for studying
the properties of the solution. Now, we assume that the
chains are perfectly aligned in the core forming without
the coronas a circular cylinder with the chain ends in the
basal planes. This is certainly an idealized form of the
aggregates. The contour length of one cellulose molecule
is L. If h characterizes the part of the molecule within the
core, its length is given byhL ¼ ahNC wherea denotes the
length of one monomer unit. The rest of the molecules forms
spherical coronas at the ends of the core. The diameter of

one cellulose molecule isd then the radius of the core,Rc, is

Rc ¼ p1=2 d
2

(2)

The free energy of a single aggregate may be approxi-
mated by a sum of two contributions, arising from the
special structure of the micelle

DFsingle¼ DFinterfaceþDFcorona (3)

The first term represents the interfacial free energy of the
core. With Eq. (2), it reads

DFinterface=kBT ¼php1=2Ka2 d
a

� �
NC (4)

The second term stands for the coronal energy. Following
Halperin [15], we formulate this contribution in terms of
blobs, i.e. chain parts that display single chain behaviour.
It results in

DFcorona

kBT
> 2p3=2ln

RC þ H
RC

� �
> 2np3=2

3 ln 1þ
21=n ¹ 1

n

a
d

� �1=n (1¹ h)NC

p1=2

� �
ð5Þ

whereH is the thickness of the corona andn is the single
chain exponent,n ¼ 1/2 for an ideal chain andn ¼ 3/5 for a
chain in a good solvent. Details of derivation of Eq. (5) are
given in Appendix A. ForRc p H and h . (1 ¹ h), the
thickness of the corona might be approximated by

H ¼
a(1¹ h)nNn

C

(2n)np(n ¹ 1)=2 <
a

(2n)n
Nn

C

p(n¹ 1)=2 (6)

Eq. (5) is not correct anymore in the limitsh → 1 andh ,
(1 ¹ h), respectively. In the first case, the corona is not
spherical but consists of stretched chains while in the second
case overlapping of the coronas occurs.

Minimization of the free energy, Eq. (3), per aggregated
chain results in two equations for quantitiesp and h and
yields the equilibrium structure of a single micelle. With
Eqs. (4) and (5), it follows

1¹ h ¼
1
q

p1=2

NC

21=n

p

a
d

� �1=n þ 1 p1=2

Ka2 ¹ 1

� �
and

Ka2 ¼
2n

p

a
d

� � p
NC

ln
21=n

p

a
d

� �1=n þ 1 p1=2

Ka2

� �
ð7Þ

where

q ;
21=n¹ 1

n

a
d

� �1=n

From Eqs. (7) one gets the following rough approximations
for the dependencies ofp andh onKa2, in the limit (NC/p1/2)
q 1

p
NC

<
Ka2

ln
p1=2

Ka2

� � and 1¹ h <
1

ln
p1=2

Ka2

� � (7a)

Fig. 1. Fringed micelle (cf. text).
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Since ln (p1=2)=(Ka2)
� �

only weakly depends onKa2, the
number of chains forming the aggregate increases almost
linearly withKa2 whereas the length of the core only weakly
changes with interfacial energyKa2. For very small values
of Ka2, p=(NC) → 0 and (1¹ h) → [1=(NC)] which means
the coronas disappear. In the limit of sufficiently high values
of Ka2, h → 1=2 and the coronas start to overlap. In both
situations, the model becomes meaningless.

2.2. The free energy of a perfect micellar solution

Minimization of the free energy of a single micelle, given
by Eqs. (3)–(5), with respect to the quantitiesp andh leads
only to approximate results since the quantitiesp andh also
depend on the composition of the solution. This is so
because the entropy of mixing of aggregates and free sol-
vent complexes contributes to the free energy of the particle
phase. It affects the equilibrium properties of the particle
phase like the average dimension of the aggregates. For any
concentrationF of cellulose there will be an average
numberp(F) and an average reduced core lengthh(F).

In the first step, the system is regarded as a perfect solu-
tion of (NF)=(pNC) particles andN(1 ¹ Fy) mobile solvent
complexes. Since each core cariesphp1/2NC(d/a) immobile
solvent complexes, the quantityy reads

y¼ 1þ
ph

p1=2

d
a

� �
(8)

The free energy of the particle phase, with reference to the
pure components, is given as the sum of two contributions

DF ¼
NF

pNC
DFsingle¹ TDSmix (9)

whereDSmix represents the entropyofmixingof the aggregates
and the mobile solvent complexes. It can be expressed as

DSmix

NkB
¼ ¹

F

pNC
ln(Fy) ¹ (1¹ Fy)ln(1¹ Fy) (10)

Eq. (10) results if one places(NF)=(pNC) particles andN(1
¹ Fy) complexes on lattice sites.

Minimization of the total free energy, Eq. (9), with
respect top and h yields the equilibrium structure of the
micelles in a perfect solution. In the same rough approxima-
tion that led to Eq. (7a), the quantitiesp andh now read

p
NC

<
K

ln
p1=2

K

� � and 1¹ h <
1

ln
p1=2

K

� � (11)

with

K ; [Ka2 ¹ 1¹ ln(1¹Fy)] (11a)

The precise expressions forp andh are given in Appendix
B. They are very similar to Eqs. (7) if one replacesKa2 by K.
Eqs. (11) and (11a) show that changes in concentration of
cellulose,F, influence more the quantityp than the quantity
h. At Ka2 ¼ const, particle numberp increases withF while

h slightly decreases. Here, we havep=(NC) → 0 and (1¹ h)
→ 1/NC if K p 1.

2.3. Interactions between micelles

The free energy, Eq. (9), describes a perfect solution of
(NF)=(pNC) micelles andN(1 ¹ Fy) solvent complexes.
Now we assume, the micelles of sizep(F) andh(F) exert
some interactions to each other. In the limit(NC)=(p1=2) q 1,
the free energy of a perfect solution of micelles, having their
equilibrium structure, can be approximated by

DFeq¼ FKa2(y ¹ 1) þ (1¹ Fy)ln(1¹ Fy) (12)

according to Eqs. (5), (9) and (B3). We now allow, as a small
perturbation compared withKa2, attractions between micelles
and express the corresponding free energy as follows

DF
NkBT

¼ DFeq¹ b
F

p1=2

� �n

(13)

The first term of Eq. (13) is given by Eq. (12) and the second
one takes into account interactions betweenn micelles with
b being the corresponding interaction parameter. It results
from (H2F)=(pNC) whereH2 has been approximated byH2

> a2NCp1/2 after Eq. (6) withn ¼ 1/2. To analyse the phase
stability of a solution of interacting micelles, one has to
calculate the derivatives of Eq. (13) with respect toF.
According to Eq. (11), the parameterh can be seen as inde-
pendent ofF to a good approximation. Moreover, we
assume����� dy

dF

�����¼ ph

p1=2

1
2p

dp
dF

� �
#

ph

p1=2 p 1 (14)

[cf. below, Eq. (18)]. With these approximations the second
and third derivatives of Eq. (11) with respect toF can be
represented by

DF0

NkBT
¼ ¹ bn(n¹ 1)

Fn¹ 2

pn=2 [1þ Y] þ
y2

1¹ Fy
(15)

DF09

NkBT
¼ ¹ bn(n¹ 1)(n¹ 2)

Fn¹ 3

pn=2 [1þ Z] þ
y3

(1¹ Fy)2

(16)

The quantitiesYandZ comprise first to third derivatives ofp
with respect toF. The explicit form ofY is given in Appen-
dix C. From Eqs. (15) and (16), we get for the critical values
of b andF the following expressions

bc

pn=2yn ¼
1
n

n¹ 1
n¹ 2

� �n¹ 2 1þ
1

n¹ 1
Yþ

n¹ 2
n¹ 1

Z

� �n¹ 1

(1þ Y)2(1þ Z)n¹ 2 (17)

yFc ¼
n¹ 2
n¹ 1

1þ Z

1þ
1

n¹ 1
Yþ

n¹ 2
n¹ 1

Z

� �
As can be seen the smallest value forn, where phase
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instability occurs, isn ¼ 3. With increasingn, the critical
value of parameterb increases. In the following, we con-
sider only n ¼ 3. From Eq. (B1), we can calculate the
derivatives ofp with respect toF. The first two read in
the approximation (NC/p1/2) q 1 (cf. Appendix C)

F

2p
dp
dF

� �
¼

1
2K

Fy

1¹ Fy
and

F2

2p
d2p

dF2

� �
¼

1
2K

Fy

1¹ Fy

� �2

(18)

whereK is given by Eq. (11a). From Eq. (18), one sees that
{ [F=(2p)][(dp)=(dF)]} varies between zero and approxi-
mately one for 0# Fy # 0.6 (if Ka2 Þ 1) and decreases
with increasingKa2. Approximately, the same variation shows
the second derivative ofp within the limits 0# Fy # 0.5.

Eq. (13) also depends onpn/2 that varies withF. One gets
from Eq. (B1)

p1=2 ¼
p

(2a=d)1=n þ 1K 1þ

������������������������������������������������������������
1þ

22=n þ 1(a=d)1=n þ 1

pn

(1¹ h)NC

K

s24 35
(19)

whereK is given by Eq. (11a). Inserting Eqs. (18) and (19)
in Eq. (15) (withY as given in Appendix C) allows to cal-
culate stability limits for solutions of interacting micelles in
the limits (NC/p1/2) q 1 andh,y ¼ const.

3. Discussion

Particle numberp and core lengthh of a single micelle as
well as for micelles in perfect solutions of different cellulose
concentrations are depicted in Figs 2 and 3 as functions of
Ka2. The curves were calculated from Eqs. (7), (B1) and
(B2), respectively. Since we assume (a/d) ¼ 1, the influence
of the single chain exponent can be neglected. The results
confirm the general tendencies given by Eqs. (7) and (11).
With ascending interfacial energy, the number of molecules,
forming the micelles, increases whileh slightly decreases.
The interfacial tension of the aggregates is related to the
adsorption tendency of the solvent complexes to surfaces
sites of the core. If this tendency is high, the interfacial

tension of the aggregate will be low and therefore, also
the number of particles forming it. Formation of the ordered
core corresponds to an enormous decrease in conforma-
tional entropy of the chains and can take place only if
there are strong enough interactions between the chains.
This ordered arrangement gradually decays in amorphous
regions, surrounding it, that give rise to formation of the
disordered coronas. A tendency that slightly increases
with increasing particle number which results in a slight
decrease ofh with Ka2. As mentioned earlier, the model
becomes unrealistic in the limits of very low and high values
of Ka2 (Ka2 . 10). In the former case, one approachesp →
1 which is associated withh → 1 and in the opposite case,p
tends to very high values withh → 1/2 where the coronas
start to overlap.

The change of quantitiesp andh with cellulose concen-
tration is depicted in Figs 4 and 5 for different values ofKa2.
Quantityh displays only slight variations withF, that even
decrease with increasingKa2, while changes inp with cel-
lulose concentration are more pronounced. Thus, the size of
the aggregates increases with both with cellulose concentra-
tion and withKa2. The same tendency can be seen for the
size of the coronas although less pronounced.

The stability of the particle solutions, we discuss in terms
of Eq. (15),(DF0)=(NkBT) ¼ 0, with n ¼ 3. From Eq. (17), it
follows that [(bc)=(p3=2y3)] → 2=3 and Fy → 1/2 for
sufficiently small values ofY and Z which may occur for
sufficiently high values ofKa2. As a general tendency, with
increasingKa2 the critical value(bc)=(p

3=2y3) decreases and
Fcy increases. For different values ofKa2, results are shown

Fig. 2. Variation of number of cellulose moleculesp aggregated in a micelle
with interfacial energyKa2. The curves were calculated after Eqs. (7) for
the single micelle (dashed curve) and after Eqs. (B1) and (B2) for micelles
in perfect solutions with the parametersNC ¼ 100,n ¼ 1/2 anda/d ¼ 1.
Cellulose concentrationsF: 0.8 (O); 0.5 ( þ ); 0.2 (X); and 0.1 (B).

Fig. 3. Variation of reduced core lengthh with Ka2. Others as in Fig. 2.

Fig. 4. Variation of number of aggregated cellulose moleculesp with cel-
lulose concentrationF for different values ofKa2. Others as in Fig. 2.Ka2:
1 (B); 2 (X); and 4(O).
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in Fig. 6. With increasingKa2, the critical interaction para-
meter,(bc)=(y3p3=2), decreases. This implies that clustering
becomes significant for high values ofKa2 and attractions
between the micelles may lead to phase instability of the
particle phase. This clustering of the micelles generates a
broad region in the phase diagram where a diluted solution
coexists with a more concentrated solution. Strictly speak-
ing, the two particle phases are not only different in overall
cellulose concentrations but consist also of particles of dif-
ferent size. However, the differences in average numbers of
molecules, aggregated in a micelle, are not significant.
Therefore, the particle concentrations in the coexisting
phases can be seen as[F=(pNC)],F to a very good approxi-
mation. Fig. 6 also shows that with descendingKa2, the
critical interaction parameter more and more approaches
Ka2 which means that Eq. (13) becomes invalid.

4. Conclusions

Aggregates of the fringed micelle type can be stable in
solutions. They are characterized by a highly ordered
cylindrical core of aligned chains, which is insoluble in
the solvent, and two spherical coronas surrounding the
core ends. With respect to their solubility behaviour, the
cellulose molecules, forming the aggregates, are seen as
two different substances. As long as they are organized in
ordered (crystalline) domains, they are completely insoluble
in the solvent. In disordered regions on the other hand, they

are soluble. The aggregation of the chains, in a core, is
driven by hydrogen-bond formation among the ordered cel-
lulose molecules. In that way, the system can reduce the less
favourable contacts with the solvent. However, as a result of
the activation process, the ordered domains are surrounded
by disordered regions which are soluble in the solvent and
form the coronas. The number of chain molecules, forming
the aggregate, and the thickness of the coronas increase with
both interfacial tension between core and solvent and cellu-
lose concentration in the system. Many-body attractions
between the aggregates may lead to phase instability of
the particle phase.

Finally, we have to mention that the suggested approach
comprises crucial simplifications: (1) we assume a highly
perfect fringed micelle, i.e. all the cellulose molecules, that
form it, are perfectly aligned in a cylindrical core. This
implies also that the coronas are perfectly spherical. These
assumptions certainly simplify the reality. The molecules
will be more or less dislocated in the core which results
also in nonspherical coronas. (2) We assume that all parti-
cles are of the same size comprisingp cellulose molecules.
This means, we neglect the polydispersity of the particle
phase that is likely to occur.

Appendix A

In a shell at distancer, from the end of the core, and
thicknessd(r), there arep blobs of sized:

r2d > pd3 or d >
r

p1=2 (A1)

In general terms, the blob size is given by

d(r) ¼ m(r)na (A2)

wherem(r) is the number of monomers inside the blob at
distancer andn is the single chain exponent. With Eqs. (A1)
and (A2), we get for the volume fraction of monomers
inside the corona,Fcorona(r), at distancer

Fcorona(r) >
pm(r)a3

r2d(r)
> p(3¹ 1=n)=2 a

r

� �(3¹ 1=n)
(A3)

As can be seen from Eq. (A3),m ¼ cd3, wherec is the
number density of monomers in the corona,F ¼ ca3.
Hence, the corona is a densely packed system of blobs.
The thickness of the corona,H, follows from

a3p(1¹ h)
NC

2
>

∫Rc þ H

Rc

r2F(r)dr >
v

21=np
3=2a3 d

a

� �1=n

3
Rc þ H

Rc

� �1=n

¹ 1

� �
ðA4Þ

where Eq. (2) has been used. Then, we find

Rc þ H
Rc

� �1=n

> 1þ q
(1¹ h)NC

p1=2 (A5)

Fig. 5. Varation of reduced core lengthh with cellulose concentrationF for
different values ofKa2. Markers as in Fig. 4.

Fig. 6. Stability limits for cellulose solutions calculated after Eq. (15) with
the parametersNC ¼ 100,n ¼ 1/2,a/d ¼ 1 andh̄ ¼ 0.6.Ka2: 2 (X); 3( þ );
and 4(O).
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whereq is defined as in the context of Eq. (7). Since the
blobs behave essentially as hard spheres, we may say that
their energy equals kBT. Then, one gets for the free energy
of the spherical coronas (the surface energy of the coronas
can be neglected)

DFcorona

kBT
¼ 2

∫Rc þ H

Rc

dmblob > 2
∫Rc þ H

Rc

r2

d3dr > 2np3=2

3 ln 1þ q
(1¹ h)NC

p1=2

� �
ðA6Þ

Appendix B

Minimization of Eq. (9) results in the following two
equations (where one term, 1/pNCy, has been neglected)

1¹ h¼
1
q

p1=2

NC

21=n

p
·

a
d

� �1=n þ 1 p1=2

K
¹ 1

� �
(B1)

and

K ¼
2n

p

a
d

� � p
NC

ln
21=n

p

a
d

� �1=nþ 1
·
p1=2

K

� �
¹

2
pp1=2NC

a
d

� �
ln(Fy)

(B2)

whereq is defined as in the context of Eq. (7). Eq. (B2) is
equivalent to

p1=2

NC
ln 1þ q

(1¹ h)NC

p1=2

� �
¼

1
npNC

ln(Fy) þ
q

1þ q
(1¹ h)NC

p1=2

(B3)

Eqs. (B1) and (B2) allow us to computep(F, Ka2) andh if
reasonable values ofKa2, n, (a/d) andNC are known.

Appendix C

Explicit form of Y

Y¼ ¹
2n

n¹ 1
F

2p
dp
dF

� �
þ

2(n=2þ 1
n¹ 1

F

2p
dp
dF

� �2

¹
1

n¹ 1
F2

2p
d2p

dF2

� �
ðC1Þ

Derivatives ofp with respect toF

From Eq. (B1), we have

S[Ka2 ¹ 1¹ ln(1¹Fy)] ¼
21=n

p

a
d

� �1=n þ 1
p1=2 (C2)

with

S; 1þ q
(1¹ h)NC

p1=2 (C3)

Eq. (C2) leads to

F

2p
dp
dF

� �
¼

S
S¹ 1

Fy

1¹ Fy

1

K þ
2n

p

a
d

� � p
(1¹ h)NC

� � (C4)

We now assume thatNC/p1/2
q 1 then it followsS/(S¹ 1) <

1 and in the same approximation (from Eq. (B1))

K <
2n

p

a
d

� � p
(1¹ h)NC

Using these approximations, Eq. (C4) becomes Eq. (18).
Starting from Eq. (C4), one can calculate the second
derivative ofp with respect toF and eventually, one gets
in the same approximation the second derivative given in
Eq. (18).
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